منابع مشابه
Gradient Recovery in Adaptive Finite Element Methods for Parabolic Problems
Abstract. We derive energy-norm a posteriori error bounds, using gradient recovery (ZZ) estimators to control the spatial error, for fully discrete schemes for the linear heat equation. This appears to be the first completely rigorous derivation of ZZ estimators for fully discrete schemes for evolution problems, without any restrictive assumption on the timestep size. An essential tool for the ...
متن کاملCan We Have Superconvergent Gradient Recovery Under Adaptive Meshes?
~ We study. adaptive finite element methods for elliptic problems with domain corner singularities. Our model problem is the two dimensional Poisson equation. Results of this paper are two folds. First, we prove that there exists an adaptive mesh (gauged by a discrete mesh density function) under which the recovered.gradient by the Polynomial Preserving Recovery (PPR) is superconvergent. Second...
متن کاملGradient Recovery for the Crouzeix-Raviart Element
A gradient recovery method for the Crouzeix–Raviart element is proposed and analyzed. The proposed method is based on local discrete least square fittings. It is proven to preserve quadratic polynomials and be a bounded linear operator. Numerical examples indicate that it can produce a superconvergent gradient approximation for both elliptic equations and Stokes equations. In addition, it provi...
متن کاملLocating Natural Superconvergent Points of Finite Element Methods in 3d
In [20], we analytically identified natural superconvergent points of function values and gradients for several popular three-dimensional polynomial finite elements via an orthogonal decomposition. This paper focuses on the detailed process for determining the superconvergent points of pentahedral and tetrahedral elements.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Models and Methods in Applied Sciences
سال: 2019
ISSN: 0218-2025,1793-6314
DOI: 10.1142/s0218202519500386